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Abstract
We extend the notion of the Moore–Penrose inverse of a matrix to the case
of a morphism between vector bundles and a more general concept is used to
develop the geometric theory of Udwadia and Kalaba’s approach to constrained
Lagrangian mechanics.
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1. Introduction

The equations of motion describing the dynamical evolution of a classical mechanical
system can be derived from several alternative basic principles, Newtonian, Lagrangian and
Hamiltonian dynamics being the best-known examples. But there are other very useful
principles and among them the so-called Gauss principle of least constraint, established by
Gauss in 1829 as a consequence of the principle of virtual works, plays a relevant role.

In the process of geometrization of physics, during recent years many geometric structures
have been identified as fundamental ingredients of the theory and the more detailed analysis of
them from this new perspective has been very clarifying and useful, providing us with answers
for different problems and proposing new questions, for instance about the uniqueness of such
structures for a specific problem and the implications of the possible existence of alternative
structures [4, 10, 12].

In many recent publications [15, 17, 18], and in a book [16] Udwadia and Kalaba used the
Moore–Penrose inverse of a matrix to establish the equations of the motion of a system subject
to non-holonomic constraints. Let us remark that the Moore–Penrose inverse has widely been
used in some branches of applied mathematics, but it has been scarcely used in physics; to
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the best of our knowledge, it was used for the first time in mechanics in the above-mentioned
paper by Udwadia and Kalaba.

Our primary aim in this paper is to derive in a geometric way the possible equations
of motion of constrained systems using a generalization of the Moore–Penrose inverse of a
matrix (i.e., a linear transformation) and some of its applications in constrained Lagrangian
mechanics. In doing so we extend the range of application and a considerable increasing of
the level of geometrical insight is obtained.

The first problem in constrained mechanics is to find consistent equations for the
accelerations as functions of positions and velocities, from which to derive the trajectories
fulfilling the constraints and produced by the active forces. Udwadia and Kalaba obtained the
most general form of the accelerations by applying the Moore–Penrose inverse to solve the
constraints when written in terms of the accelerations, for the accelerations themselves. Then
they showed that the constraint force is the sum of an ‘ideal’ (or of D’Alembert type) term,
which is uniquely determined by the unconstrained or released motion and the constraints, and
another non-ideal one (i.e. a term that does work in virtual displacements), which represents
influences such as friction and needs to be further specified as a defining part of the mechanical
system. This information has to be included in a modified D’Alembert Principle [17]. For
systems wearing only ideal constraints, both the existence and form of the Lagrange multipliers
arise as a natural consequence of constructions based on fundamental principles. In this case,
it is easily shown that the ‘deviation’ of the constrained motion from the unconstrained one
is equivalent to the Gauss principle of least constraint. The extension of this principle to
non-ideal constraints was given in [11].

Udwadia and Kalaba’s treatment has two main restrictions: on one side, it is of a local
character, sometimes it requires the use of Cartesian coordinates, and on the other side it only
deals with natural Lagrangian systems, i.e. systems for which the Lagrangian is of the form
L = T −V . Nevertheless, we think that the method worked by these authors is really useful in
understanding some constructions usually made in the analysis of the dynamics of constrained
mechanical systems, and it deserves some more attention in order to clarify it and to overcome
such restrictions. So it is our purpose to give in this paper a detailed and geometric description
of Udwadia and Kalaba approach to constrained Lagrangian mechanics.

The structure of this paper is as follows: we first give in section 2 a summary of important
properties of linear algebra and a geometric construction of the inverse of a linear singular
transformation between spaces more general than R

n, both at the algebraic (section 3) and
the geometric (section 4) levels. In section 5, the geometric theory of Lagrange equations
when constraints are present is reviewed and the dynamical problem is formulated in terms
of the underlying affine structures. Then we will apply it to the geometric analysis of
constrained mechanics following the Udwadia and Kalaba approach; in particular, when
only ideal constraints are present we will clarify the origin, meaning and rôle of the Lagrange
multipliers (section 6) and the Gauss principle of least constraint is also studied in this context
(section 7). Finally, some illustrative examples are given in section 8.

2. A short review of some properties of linear maps

To start with we review some basic properties of linear algebra concerning the canonical
decomposition of a linear map.

Given a map F between two sets F : M → M̄ we can define an associated equivalence
relation RF in M by

m1RF m2 ⇐⇒ F(m1) = F(m2),
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in such a way that the map F factorizes according to the following diagram:

(1)

where π denotes the canonical projection, i is the natural injection and F̄ is a bijection given by
F̄ ([m]) = F(m). In the particular case in which F is a bijection, M/RF = M and F(M) = M̄

with i = idM̄ . We will be interested in the case of M and M̄ being linear spaces V and V̄ ,
while F will be a morphism.

We also recall that given a linear space V , any linear subspace W has associated another
equivalence relation RW by means of

v1RWv2 ⇐⇒ v1 − v2 ∈ W.

When F : V → V̄ is a linear map between real linear spaces, the equivalence relation RF

coincides with that associated with the linear subspace ker F , and then F can be factorized as
a product of linear maps as indicated in the following diagram (see (1)):

(2)

where π is an epimorphism, the canonical projection, i is a monomorphism, the natural
injection, and F̄ is an isomorphism of linear spaces given by F̄ (v + ker F) = F(v).

When the linear space V is a direct sum of two linear subspaces V = W1 ⊕ W2, there
exist projections P1 and P2 onto such subspaces. Recall that P1 + P2 = idV , P 2

1 = P1 and
P 2

2 = P2. Furthermore,

Im P1 = W1 = ker P2, Im P2 = W2 = ker P1.

The corresponding canonical decompositions (2) of P1 and P2 imply that each linear
subspace W2 that is supplementary of the linear subspace W1 is isomorphic to V/W1, because
P̄ 2 is an isomorphism.

When, furthermore, V is endowed with an Euclidean structure, g, each linear subspace
W determines a unique orthogonal supplementary subspace

W⊥ = {v ∈ V | g(v,w) = 0,∀w ∈ W },
and consequently an orthogonal projection P onto W (parallel to W⊥). In this case P = P t ,
where P t is the adjoint map of P. Moreover, as W⊥ is a supplementary subspace of W onto
which idV − P projects, idV − P defines an isomorphism between V/W and W⊥.

It is also to be remarked that the Euclidean structure of V provides us with an identification
of V with its dual space V ∗, by means of the linear isomorphism ĝ : V → V ∗ given by
ĝ(v) = g(v, ·), i.e. 〈ĝ(v1), v2〉 = g(v1, v2), where 〈·, ·〉 denotes the natural pairing of the
linear space V with its dual. For each linear subspace W,

ĝ(W) = (W⊥)0, ĝ(W⊥) = W 0,

where

W 0 = {α ∈ V ∗ | 〈α,w〉 = 0,∀w ∈ W }.
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Let us now consider a linear map F : V → V̄ between finite-dimensional vector spaces
and the linear equation F(v) = v̄, where v̄ is a vector v̄ ∈ V̄ ; we want to determine under
what conditions such an equation has a solution vector v ∈ V , i.e. there exists a vector v ∈ V

such that F(v) = v̄, and how to determine such vectors.
The answer is given in the following theorem [8], where F ∗ denotes the dual map of F,

namely, the linear map F ∗ : V̄ ∗ → V ∗ given by 〈F ∗(ᾱ), v〉 = 〈ᾱ, F (v)〉.
Theorem 1. Given a linear map F : V → V̄ between finite-dimensional vector spaces and a
vector v̄ ∈ V̄ , the necessary and sufficient condition for the existence of a vector v ∈ V such
that F(v) = v̄ is that 〈ᾱ, v̄〉 = 0, for all ᾱ ∈ ker F ∗. The set of such solution vectors is an
affine space modelled with ker F .

Note that if dim V = n then Im F = (ker F ∗)0, because if v̄ = F(v) with v ∈ V and
ᾱ ∈ ker F ∗, 〈ᾱ, v̄〉 = 〈ᾱ, F (v)〉 = 〈F ∗(ᾱ), v〉 = 0, i.e. Im F ⊂ (ker F ∗)0, and when V is
finite dimensional both subspaces are of the same dimension. Furthermore, it is obvious that
if v − v0 ∈ ker F,F (v) = F(v0) and conversely, if F(v) = F(v0), then v − v0 ∈ ker F .

3. Moore–Penrose inverse of a linear transformation

The concept of inverse of a singular linear transformation independently proposed by Moore
and Penrose [2] can now be used. Recall that if F : V → V̄ is a linear map of an
Euclidean space (V , g), then if P denotes the orthogonal projection onto the linear subspace
W = ker F, idV − P is an isomorphism of V/ ker F in (ker F)⊥. But F̄ is an isomorphism
between V/ ker F and F(V ), and therefore there exists an isomorphism σ : Im F → (ker F)⊥.
In such isomorphism, if v̄ ∈ Im F , then σ(v̄) is the unique vector v ∈ (ker F)⊥ such that
F(v) = v̄, that is, Fσ(v̄) = v̄; and if v ∈ (ker F)⊥, then σF(v) = v. The following
commutative diagram clearly shows the construction we have just made:

(3)

Let assume that V̄ is also endowed with an Euclidean structure ḡ. Then we give the
following definition based on the diagram (3):

Definition 1. The Moore–Penrose inverse of a singular linear transformation F : V → V̄

between two Euclidean spaces (V , g) and (V̄ , ḡ) is the singular transformation F † : V̄ → V

defined by

F †(v̄) =
{

0 if v̄ ∈ (Im F)⊥,

σ (v̄) if v̄ ∈ Im F.

Note that using a similar definition for a regular linear map F, i.e. if ker F = 0 and
Im F = V̄ , we would obtain the usual inverse map F−1; therefore, the Moore–Penrose inverse
is a generalization of the concept of inverse of a regular map and so we call it ‘(generalized)
inverse’. Note that by definition Im F † = (ker F)⊥, and it is also well known from linear
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algebra (e.g. [8]) that Im F t = (ker F)⊥, and therefore Im F † = Im F t . Furthermore,
ker F † = (Im F)⊥ = ker F t . Putting F t instead of F in the last relation, we conclude
that ker F = ker F t†.

Proposition 1 (Moore). The linear map F † : V̄ → V is the Moore–Penrose inverse of
F : V → V̄ if, and only if, FF † is the orthogonal projection onto Im F and F †F is the
orthogonal projection onto (ker F)⊥.

In fact, the map FF † is given by

FF †(v̄) =
{

0 if v̄ ∈ (Im F)⊥,

F (σ (v̄)) = v̄ if v̄ ∈ Im F.

In a similar way,

F †F(v) =
{

0 if v ∈ ker F,

σF(v) = v if v ∈ (ker F)⊥.

There is an alternative characterization of F †, due to Penrose [14].

Proposition 2 (Penrose). The Moore–Penrose inverse of a linear map F : V → V̄ is the
only linear map F † : V̄ → V satisfying the following properties: FF †F = F,F †FF † =
F †, (FF †)t = FF † and (F †F)t = F †F .

It is clear that F † satisfies the above-mentioned properties as a consequence of definition 1
and proposition 1. On the other hand, if a linear map F1 : V̄ → V satisfies such conditions
then, P = FF1 and Q = F1F are self-adjoint projectors onto Im P and Im Q, respectively;
it also follows from these properties that FF1 = FF † and F1F = F †F , and consequently,
Im P = Im F and Im Q = (ker F)⊥. The result of previous proposition shows that F1 = F †.

Linear equations in Euclidean spaces. Let us now consider the same linear equation F(v) =
v̄ when the corresponding linear spaces are Euclidean ones. It follows from proposition 1 and
theorem 1 that

Theorem 2. Let F : V → V̄ be a linear map between Euclidean spaces. The necessary
and sufficient condition for the linear equation F(v) = v̄, v̄ ∈ V̄ , to have a solution is that
FF †(v̄) = v̄. In this case v0 = F †(v̄) is the solution of minimal length and any other solution
can be written as v = F †(v̄) + ker F .

Obviously, for an arbitrary solution v = v0 + ξ, ξ ∈ ker F , the relation g(v, v) �
g(v0, v0) holds. We can consider in the same way the case of g being negative, and thus the
particular solution v0 should be of maximal length.

The result in theorem 2 is still valid in the case of an inhomogeneous linear equation
between affine spaces. Let F : E → Ē be an affine map between the affine spaces E
and Ē , which are modelled on the vector spaces E and Ē, respectively. Then, it is clear
that the equation F(x) = x̄, with a given x̄ ∈ Ē , has a solution when the associated
(inhomogeneous) linear equation [F ](x −x0) = x̄ −F(x0) has a solution, namely, if and only
if [F ][F ]†(x̄ −F(x0)) = x̄ −F(x0), where [F ] ∈ L(E, Ē) is the linear part of F and x0 ∈ E is
an arbitrary origin in E . Using the result of theorem 2, the solution of the equation F(x) = x̄

will be expressed in the form

x = x0 + [F ]†(x̄ − F(x0)) + ker[F ]. (4)
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Other properties of the inverse transformation. It is to be expected that the inverse of the
inverse will be the original map, as it actually happens. Furthermore, the inverse of the adjoint
is the adjoint of the inverse transformation. Note however that, in the general case, the inverse
of a product is not the product of the inverses in the opposite order. In the following proposition
some useful properties are pointed out.

Proposition 3. The inverse F † of the linear transformation F : V → V̄ satisfies the following
properties:

(1) F †† = F .
(2) (αF )† = (1/α)F †, 0 �= α ∈ R.
(3) (F t )† = (F †)t .
(4) (F tF )† = F †F t†.
(5) F † = F t(FF t)† = (F tF )†F t .

Note that if V and V̄ are finite-dimensional spaces, the transpose F t and the dual
transformation F ∗ are related by F t = ĝ−1F ∗ ˆ̄g, and consequently the last three properties can
be expressed in terms of the dual map.

As a corollary of the preceding proposition, if the linear map F is injective (respectively,
epijective), then F † = (F tF )−1F t (respectively, F † = F t(FF t)−1), because F tF

(respectively, FF t ) is an automorphism of V (respectively, of V̄ ).

4. Inverse morphism of a morphism of vector bundles

The previous constructions can be extended to the framework of vector bundles. Let us
consider two vector bundles π : E → M and π̄ : Ē → M . The most interesting cases
are when such bundles are the tangent bundle T M and the cotangent bundle T ∗M of a
differentiable manifold.

As is well known, if F : E → Ē is a constant rank vector bundle morphism on
the identity in the base, then ker F defines a vector subbundle of E and F(E) is a vector
subbundle of Ē; moreover, there exists an isomorphism F̄ between E/ ker F and F(E) given
by F̄ (e + ker Fp(e)) = F(e).

When the vector bundle E is a direct sum of two vector subbundles, E = E1 ⊕ E2, then
there exist two projections P1 and P2 onto the respective subbundle such that

Im P1 = E1 = ker P2, Im P2 = E2 = ker P1,

and then we see that there exist vector bundle isomorphisms P̄ 1 : E/ ker P1 → E1 and
P̄ 2 : E/ ker P2 → E2. The morphism F : E → Ē allows us to choose a subbundle E2

supplementary of E1 = ker F in E and each such a choice provides us with an isomorphism
of E2 with F(E).

When furthermore the vector bundle E is endowed with an Euclidean structure g, i.e. a
section of the bundle S2

0 (T E) → E of definite positive symmetric bilinear maps, each vector
subbundle E1 has a special supplementary, namely the orthogonal subbundle E2 = E⊥

1 which
is determined by the Euclidean structure. Consequently, F determines an isomorphism of
vector bundles between (ker F)⊥ and F(E).

Finally, when Ē is also endowed with an Euclidean structure ḡ, we can define the
generalized inverse morphism (or of Moore–Penrose) of a constant rank morphism F over the
identity in the base as the linear map associating with the vectors of (F (E))⊥ the null vector
0, while the image of y ∈ F(E) is the unique vector in (ker F)⊥ whose image under F is the
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own y. This inverse morphism of F is denoted by F † and is a linear morphism of the vector
bundle π̄ onto the vector bundle π .

These vector bundle maps have properties analogous to the above mentioned ones in
the algebraic case. Here P(ker F)⊥ and PIm F are the morphisms of π and π̄ , respectively, of
orthogonal projection onto (ker F)⊥ and Im F , respectively. Thus we have

Proposition 4. The inverse morphism of a given morphism F of the vector bundle π onto the
vector bundle π̄ is the only vector bundle morphism F † of π̄ over π such that P(ker F)⊥ = F †F
and PIm F = FF †.

In a similar way and with the obvious notation, the result in proposition 2 is valid at the
geometric level. As the dual morphism F ∗ and the adjoint F t of F between vector bundles are
well defined, the results in proposition 3 also hold.

Consider now linear equations in vector or affine bundles. Let π : E → M and
π̄ : Ē → M be two vector bundles over the manifold M and let F : E → Ē be a constant
rank morphism of vector bundles over idM . A linear equation is a pair (F, σ̄ ) constituted by
a morphism F and a section σ̄ ∈ Sec(π̄); the section σ ∈ Sec(π) is a solution of the linear
equation (F, σ̄ ) if F ◦ σ = σ̄ . The space of solutions of the linear equation (F, σ̄ ) is an affine
space modelled by the vector space Sec(π| ker F ).

If the vector bundles are endowed with an Euclidean structure, a slight generalization of
theorem 2 says us that the necessary and sufficient condition for the linear equation (F, σ̄ ) to
have a solution is that FF †σ̄ = σ̄ ; the solutions are then expressed in the form

σ = F † ◦ σ̄ + ξ, ξ ∈ Sec(π| ker F ). (5)

In coordinates adapted to the vector bundle structure, a linear equation between vector
bundles is expressed as a set of linear maps between fibres. Let (qi) be a system of local
coordinates in a neighbourhood U of the differentiable manifold M, and let (qi, xa) and
(qi, yα) be systems of fibre coordinates in E and Ē, respectively. The linear morphism F and
the section σ̄ are locally expressed in the form

F(qi, xa) = (
qi, yα = Aα

b (q)xb
)
, σ̄ (qi) = (qi, γ̄ α(q)),

in such a way that the section σ(q) = (qi, γ a(q)) solution of the linear equation (F, σ̄ ) must
satisfy in each point q = (qi) ∈ U , the linear equation

Aα
b (q)γ b(q) = γ̄ α(q).

A section ξ ∈ Sec(π| ker F ) can be locally expressed as ξ(q) = (qi, ξ a(q)), together with
the condition Aα

a (q)ξa(q) = 0, and then the general solution (5) of the linear equation is of
the following form

γ a(q) = (A†)aα(q)γ̄ α(q) + ξa(q).

As in the previous section, we can extend this notion and talk about a linear equation
(F, σ̄ ) in affine bundles E and Ē , where the morphism F is affine. The linear equation has a
solution iff [F ] ◦ [F ]† ◦ (σ̄ − F ◦ σ0) = σ̄ − F ◦ σ0 and the general solution is (4)

σ = σ0 + [F ]† ◦ (σ̄ − F ◦ σ0) + ker[F ], (6)

where σ0 is a section of π acting as a reference section.
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5. Constrained Lagrangian systems

First of all, we will review the geometrical setting of the Lagrangian dynamics and explain
the subsequent notation. Let M be the configuration space of an m-dimensional autonomous
Lagrangian system, and τM : T M → M the tangent bundle projection. The basic constructions
we will make use from now on are those of jet bundles of curves of M. Lagrangian systems of
the first-order are described by a single function L ∈ C∞(T M) (the ‘Lagrangian’) encoding the
dynamical properties (kinematics, masses, active forces, etc) of the system; as the dynamical
equations are of the second-order type, the spaces we need are the 1-jet bundle, which coincides
with the tangent bundle T M , and the 2-jet bundle T 2M; both T M and T 2M are bundles over
M, and the elements of T M are known as ‘velocities’ or ‘(dynamical) states’, while those of
T 2M are the ‘accelerations’. There is a natural projection µ : T 2M → T M, j 2

x σ �→ j 1
x σ, j k

x σ

denoting the k-jet, k = 1, 2, of the curve σ : R → M at the point σ(0) = x. Every curve σ

can be prolonged to curves jkσ : R → T kM given by jkσ (t) = jk
σ(t)σt , σt being the curve

σt (s) = σ(t + s) which starts from the point σ(t).
There exists a remarkable structure given by the ‘total time derivative’ operators

T0 = idT M and T : T 2M → T T M defined by the rule

T ◦ j 2σ = (j 1σ)∗ ◦ d

dt
,

where d/dt ∈ X(R) is the unique vector field in R, which is endowed with a volume form dt

(the time measure), such that i
(

d
dt

)
dt = 1. These operators T0 and T are in fact vector fields

along the projections τM and µ, respectively, and are (µ, τM)-related, i.e. τM∗ ◦ T = T0 ◦ µ.
As is well known [5], each of these operators induces two derivations, one of type d∗ and the
other of type i∗, along the corresponding maps; as usually, the derivations will be denoted by
dT and iT, and same for T0. In particular, given a function f ∈ C∞(M) (resp., f ∈ C∞(T M)),
its total time derivative is a function dT0f ∈ C∞(T M) (resp., dTf ∈ C∞(T 2M)).

Let us have a look at these constructions in local coordinates. Let (qi) be a local system
of coordinates in M; let (qi, vi) and (qi, vi, ai) be the corresponding fibred coordinates in
T M and T 2M . If the curve σ locally is expressed as σ(t) = (σ i(t)), σ (0) = x, the k-jets are
jk
x σ = (σ i(t), dσ i/dt, . . . , dkσ i/dt k). On the other hand, the total time derivative operators

are

T0(q, v) = vi ∂

∂qi
, T(q, v, a) = vi ∂

∂qi
+ ai ∂

∂vi
,

while the total time derivative of a function f ∈ C∞(M) (resp., f ∈ C∞(T M)) is
dT0f (q, v) = vi∂f /∂qi (resp., dTf (q, v, a) = ai∂f /∂vi + vi∂f /∂qi).

For our treatment of constrained dynamics, the affine structure of the fibre bundle µ is
of great importance: it is an affine bundle over the vector bundle ker τM∗ (also denoted by
V (τM)) of the τM -vertical tangent vectors of T M . The τM -vertical vector which corresponds
to a couple of accelerations w,w′ ∈ µ−1(z) is the vector T(w) − T(w′) ∈ Vz(τM); it will be
denoted by w −w′. Using the general fact that a function of the total space A of a fibre bundle
π : A → M is equivalent to a fibre bundle morphism of π over the trivial vector bundle
M × R → M , the total time derivative of a function f ∈ C∞(T M) can be represented as a
fibre bundle morphism:
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Moreover, dTf is an affine morphism whose linear part [dTf ] : V (τM) → T M ×R is nothing
but the vertical differential of f , i.e. the differential df restricted to the subbundle V (τM): in
fact, for two accelerations w,w′ over one and the same state z ∈ T M we have

dTf (w) − dTf (w′) = 〈df (z), T(w) − T(w′)〉 = 〈df (z), w − w′〉.
In local coordinates essentially we have [dTf ] · (

Xj ∂
∂vj

) = Xj ∂f

∂vj .

Fibre derivatives; the Euler–Lagrange form and the Hessian. The concept of fibre derivative
of a morphism of affine bundles [9] is another useful geometric tool in our constructions.
Given a function f ∈ C∞(T M), its fibre derivative is a morphism Ff : T M → T ∗M given
by Ff (z) = DfτM(z)(z), where fx is the restriction of f to TxM and symbol D stands for
the derivative of an application between linear spaces. The second fibre derivative is a linear
morphism F2f : T M → S2(T M) from T M to the bilinear symmetric functions of T M given
by F2f (z) = D2fτM(z)(z). By means of the vertical lift ξ v : T M ×M T M → V (τM) [3], we
extend this morphism to a bundle morphism Hf : T M → S2(V (τM)) according to the rule

Hf (z) · (ξ v(z, v), ξ v(z, v′)) = F2f (z) · (v, v′), v, v′ ∈ TτM(z)M.

In this sense, the second fibre derivative of a function f is usually called the Hessian map of
f . The induced linear morphism between the vector bundle V (τM) and its dual vector bundle
V ∗(τM) (the bundle of τM -semibasic 1-forms), will be denoted by Ĥf and the following
diagram holds

(7)

This is the interpretation of the second fibre derivative we need in the following, and it can be
proved [9] that ker(Ff )∗ = ker Ĥf , a property saying that Ff is a (local) diffeomorphism at
a point z ∈ T M if and only if Ĥf |Vz(τM) is a linear isomorphism. When this condition holds,
the function f is said to be regular (or hyper-regular, for a global diffeomorphism) and the
Hessian map of f , non-degenerate. Consequently, the vertical bundle V (τM) will be endowed
with a scalar product structure Hf ; when, furthermore, the Hessian map is positive, the scalar
product in V (τM) is Euclidean.

In local coordinates the expressions for the fibre derivatives are

Ff (q, v) = ∂f

∂vi
dqi, Ĥf ·

(
Xi ∂

∂vi

)
= Xi ∂2f

∂vi∂vj
dqj .

The regularity condition will be det(∂2f/∂vi∂vj ) �= 0.
Associated with every function f ∈ C∞(T M) we define a 1-form on the space of

accelerations, T 2M , known as the Euler–Lagrange form δf ,

δf = dTθf − µ∗ df ∈
∧1

(T 2M), (8)

where θf = df ◦ S ∈ ∧1
(T M) is a τM -semibasic form, i.e. θf ∈ Sec(V ∗(τM)), defined by

means of the almost-tangent structure (or vertical endomorphism) S of the tangent bundle
T (T M). Note that the 1-form along τM equivalent to θf is nothing but the fibre derivative
of f , and also that δf can be expressed in terms of the ‘energy’ Ef = 
(f ) − f , where

 ∈ X(T M) is the Liouville vector field [3]:

δf = iT dθf + µ∗ dEf .
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As the Euler–Lagrange form δf is τ ◦ µ-semibasic, it is equivalent to a 1-form along
τ2 = τ ◦ µ, i.e. to a bundle morphism δf ∨ : T 2M → T ∗M; using again the vertical lift,
we can extend δf , by duality, to an equivalent morphism δ̃f from T 2M to the space of
τM -semibasic 1-forms V ∗(τM):

(9)

the relation between δf ∨ and δ̃f being

〈δf ∨(w), v〉 = 〈δ̃f (w), ξ v(z, v)〉, w ∈ µ−1(z), v ∈ TτM(z)M. (10)

It is this interpretation (9) of the Euler–Lagrange 1-form what we need later in the theory of
constrained dynamics. The coordinate representation of the Euler–Lagrange form is

δf =
[
dT

(
∂f

∂vj

)
− µ∗ ∂f

∂qj

]
dqj .

The main property we want to point out is as follows.

Proposition 5. The Euler–Lagrange 1-form δ̃f is an affine morphism of affine bundles whose
linear part is the Hessian map of f .

Proof. Let us consider two accelerations w,w′ ∈ µ−1(z); thus δ̃f (w), δ̃f (w′) ∈ V ∗
z (τM) and

for a vector v ∈ TzM we have (10) 〈δ̃f (w) − δ̃f (w′), ξ v(z, v)〉 = 〈δf ∨(w) − δf ∨(w′), v〉.
Now, choosing two vectors Y ∈ TwT 2M and Y ′ ∈ Tw′T 2M such that (τM ◦ µ)∗w · Y =
(τM ◦ µ)∗w′ · Y ′ = v, a direct calculation, using the properties of all the differential forms
involved, gives

〈δ̃f (w) − δ̃f (w′), ξ v(z, v)〉 = dθf (z) · (T(w) − T(w′), µ∗w · Y ). (11)

On the other hand, a direct calculation, this time using the (local) flow of the vertical lift
Xv ∈ X(T M) of a vector field X ∈ X(M), shows that

dθf (z) · (Xv(z), V ) = 〈£Xvθf (z), V 〉
= F2f (z) · (X(τM(z)), τM∗z · V )

= Hf (z) · (Xv(z), ξ v(z, τM∗z · V ));
applying this result to the previous partial one (11) we finally arrive at

〈δ̃f (w) − δ̃f (w′), ξ v(z, v)〉 = Hf (z) · (w − w′, ξ v(z, v)), ∀v ∈ TzM,

that is

δ̃f (w) − δ̃f (w′) = Ĥf (w − w′), (12)

∀w,w′ ∈ T 2M such that µ(w) = µ(w′). �

Unconstrained motion. Now let us study the unconstrained motion of a first-order Lagrangian
system. There are two alternative but equivalent geometrical interpretations of the Euler–
Lagrange equations of the variational problem with Lagrangian L [5]: the extremals can
be regarded either as the integral curves of a second-order differential equation (a SODE,
for short) � ∈ X(T M) solution of the equation i(�) dθL = −dEL, or as those of a section
γ ∈ Sec(µ) such that γ ∗δL = 0, that is δL∨ ◦ γ = 0 or

δ̃L ◦ γ = 0; (13)
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thus, the dynamical equation is interpreted as a linear equation in affine bundles, which is the
suitable point of view in our constructions. The relation between γ and � is given by

� = T ◦ γ ; (14)

in local coordinates, if �(q, v) = vj ∂
∂qj + �j(q, v) ∂

∂vj , then the equivalent section reads

γ (q, v) = (qj , vj , �j (q, v)).
From now on, we will consider only regular Lagrangians, i.e. Lagrangians L such that

FL∗ is a (local) diffeomorphism. As is well established, in such cases the solution is unique,
that is, there is a unique (local) SODE γ0 ∈ Sec(µ) solution of the linear equation (13). This is
the unconstrained (or released) motion obeying the Hamilton principle with L as Lagrangian,
and is completely determined by L.

Constrained motion. The main goal of this paper is to study the constrained motion of a
regular Lagrangian system using the concept of inverse we have explained in the previous
sections.

The first fundamental problem in constrained dynamics is to find a system of consistent
differential equations whose integral curves are the trajectories which are compatible with
both the applied forces and the restrictions imposed by the constraints.

Geometrically speaking, a constraint of the dynamical system is a submanifold N ⊂ T M

of the space of states where the evolution takes place. N can be defined, at least locally, by
N = f −1(0), where f = (f 1, . . . , f r) ∈ C∞(M, R

r ) is the constraint function, and r the
codimension of N. The r functions f α ∈ C∞(T M), α = 1, . . . , r , impose restrictions on the
states by the constraint equations f α(z) = 0, and are supposed to be functionally independent,
although this condition is not essential in what follows.

We do not assume that the constraint function has some special features, for instance
linearity in the velocities; we are considering any type of constraints usually appearing
in (time-independent) mechanics. For holonomic constraints, i.e. constraints of the form
f (q) = 0, the constraint function is not τ ∗

Mf but the function dT0f ; the constraint dT0f = 0
means that during the motion the system has to satisfy the geometric constraint.

In the same sense, obvious conditions of consistence of the motion lead to impose the
restrictions

dTf (w) = 0 (15)

on the space of accelerations, where dTf is the action of the total time derivative operator
extended to f , i.e. dTf = (dTf 1, . . .) ∈ C∞(T 2M, R

r ). The admissible accelerations
w ∈ µ−1(z) over a given state z are just those satisfying (15). It is important to observe that
the difference of two admissible accelerations w,w′ over one and the same state z is a vector
η ∈ Vz(τM) belonging to the kernel of [dTf ]; these vectors are known as virtual displacements
(or, more properly, virtual velocities [1]) at z.

If we look for a SODE γ ∈ Sec(µ) giving the admissible accelerations over the states
during a motion compatible with the constraints, we have to consider the linear equation
dTf ◦ γ = 0, or equivalently

[dTf ] ◦ (γ − γ0) = b, (16)

where the term b = −dTf ◦ γ0 ∈ Sec(T M × R
r ) is completely determined by the constraints

and the unconstrained motion. Based on these considerations we give the following definitions.

Definition 2. An ‘admissible’ or ‘allowable’ motion is a section γ ∈ Sec(µ) such that its
deviation γ − γ0 ∈ Sec(V (τM)) from the released motion γ0 obeys the linear equation (16).
And a ‘virtual displacement’ is a τM -vertical vector field belonging to the kernel of [dTf ].
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Thus, if γ is an allowable motion, so is γ + X, for all virtual displacements
X ∈ ker[dTf ] ⊂ Sec(V (τM)).

As far as the dynamical equation is concerned we could state a variational formulation
taking the path variations restricted by the constraint N (a vakonomic formulation of the
Hamilton principle, see e.g. [1]), but we adopt the point of view of the D’Alembert–Lagrange
principle, though we do not assume a priori any special nature for the constraint force. That
is to say, we assume that the actual motion does not satisfy equation (13), and in consequence
there should exist a nonzero τM -semibasic 1-form Q, called the constraint force, such that the
actual motions γ are solutions of the linear (non-homogeneous) equation

δ̃L ◦ γ = Q. (17)

Using the affine structures involved, we can write the following linear equation for the deviation
γ − γ0 ∈ Sec(V (τM)) of the actual motion from the released one (which does satisfy (13)):

ĤL ◦ (γ − γ0) = Q. (18)

If we knew the constraint force Q ∈ Sec(V ∗(τM)), this equation immediately would provide
the solution γ − γ0 = ĤL

−1
Q. Unfortunately, Q is completely unknown, but although it

were the case, perhaps this solution did not verify the constraint equation (16) and it would
be useless. The very dynamical problem is to look for the sections γ − γ0 ∈ Sec(V (τM))

satisfying the linear equations (16) and (18); we can visualize it in the following commutative
diagram:

(19)

In the remaining sections we give a detailed analysis of these equations, studying the
nature and some properties of their solutions.

6. The constraint force and the Lagrange multiplier

Once the dynamical problem has been formulated, the first thing we must check is the
consistence of the linear equations (16) and (18). As the Lagrangian L is regular, a scalar
product structure is defined in the space V (τM), and equation (18) is certainly consistent.
On the other hand, in the space T M × R

r the Euclidean structure induced by the canonical
Euclidean product gr in R

r can be considered, and, with reference to these two scalar product
structures, an inverse of the linear morphism [dTf ] : V (τM) → T M × R

r is defined.
Remembering that [dTf ]† is a linear morphism from T M × R

r to V (τM), we can state the
consistence of equation (16) requiring that (theorem 2)

[dTf ] ◦ [dTf ]† ◦ b = b, (20)

this condition represents a sort of secondary constraint and only in the set of points N1 ⊆ N

where it is satisfied the dynamical problem will have solution. That is, the constraint
submanifold is a smaller submanifold N1 ⊆ N ⊂ T M . The condition (20) is automatically
fulfilled when the constraint function f is a submersion, i.e. the constraints f α are independent.

As pointed out above, the force of constraint Q is unknown, but it is possible to determine
its form at every admissible state in terms of some known quantities plus additional information
about the non-ideal character of constraints [15, 16].
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In fact, as an immediate consequence of theorem 2, the general solution of equation (16),
in the region N1 where it is consistent, can be written as (6)

γ − γ0 = [dTf ]† ◦ b + η, (21)

where η is an arbitrary [dTf ]-vertical section of V (τM), i.e. a virtual displacement. Substituting
this expression in equation (18) we obtain an explicit expression giving the form of the
constraint force Q:

Q = ĤL ◦ [dTf ]† ◦ b + ĤL ◦ η. (22)

Thus the force of constraint Q is made up of two additive terms. The first term is explicitly
determined by the constraints and the released motion, while the second one is left completely
arbitrary [13, 16].

The first term in (22) enjoys the important property of being transversal to the virtual
displacements. In fact, for every virtual displacement ζz at the state z, we have

〈ĤL([dTf ]† · b(z)), ζz〉 = HL(z) · ([dTf ]† · b(z), ζz) = 0

because the definition of the inverse [dTf ]† says that Im[dTf ]† = (ker[dTf ])⊥, with the scalar
structure on V (τM) provided by HL. In mechanics, the product 〈Q(z), ζz〉 is usually known as
the ‘virtual work’ of the Q force at z, and so the property we have pointed out means that the
force of constraint Q has a component that does not work in any virtual displacement. That
is, it obeys the D’Alembert principle (of virtual work); for that reason, we will call it ideal or
of D’Alembert type, and denote it by Qid:

Qid = ĤL ◦ [dTf ]† ◦ b. (23)

The other component, denoted by Qnid, does work on the system in a virtual displacement,
it is not ideal. In general, for such a constraint force

〈Qnid(z), ζz〉 = HL(z) · (ηz, ζz) �= 0, η ∈ Sec(ker[dTf ]). (24)

So, in the presence of constraints we are led to the existence of a necessary constraint force
Qid that can be understood as the ‘minimal’ force necessary to fulfil the constraint. In order to
establish unambiguous dynamical equations, the non-ideal part of the force of constraint must
be specified by means of new additional (mechanical) information about the constraint, going
beyond that included in the constraint function f itself and representing, for instance, effects
such as friction. The needed information can be provided by a prescription of the virtual work
done by the constraint; i.e. we specify the scalar product HL · (η, ζ ) as a known function
of η for all virtual displacements ζ . The choice would be part of the mechanical model we
are dealing with. This is what is given in practice when we assume, for instance, that the
sliding friction is of Coulomb or of Stokes type. For more details and illustrative examples,
see [13, 16, 17].

The Lagrange multiplier. Lagrange’s multipliers are usually introduced to write consistent
differential equations for the motion of constrained systems, but in the usual treatment their
existence is not a consequence of basic laws of motion. However, in our formulation they
arise as a simple consequence of the properties of the inverse [dTf ]†.

For an ideal constraint, the application of proposition 3.5 in terms of the dual map [dTf ]∗,
with g = HL and ḡ = gr , to (23) gives

Qid = [dTf ]∗ ◦ ĝr ◦ ([dTf ] ◦ [dTf ]t )† ◦ b,

that is,

Qid = [dTf ]∗ ◦ �, (25)
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with

� = ĝr ◦ ([dTf ] ◦ [dTf ]t )† ◦ b ∈ Sec(T M × R
∗r ). (26)

� is the Lagrange multiplier; it is a r-dimensional ‘real’ representation of the constraint
force Q and its components are known as the ‘Lagrange multipliers’. We insist on the fact that
the existence and explicit expression of � derives from the basic assumptions we made.

7. The Gauss principle of least constraint

Let us consider the case in which only ideal constraints exist, i.e. all constraints on the system
are such that the constraint forces are ideal. Once the constraint force is known, equation (21)
immediately gives for the actual motion of the system the explicit expression

γ = γ0 + [dTf ]† ◦ b, (27)

this solution is unique and the trajectory of the system is the integral curve of γ satisfying a
given initial condition. When the Hessian of the Lagrangian is positive, equation (27) admits
a direct and nice interpretation according to theorem 2: the deviation γ − γ0 is of minimal
length in the Euclidean metric provided by HL.

Defining as a measure of the deviation of motions from the released one the quadratic
form (the ‘Gaussian constraint’)

G(γ ) = HL · (γ − γ0, γ − γ0), (28)

it is easy to show that the admissible motion minimizing the Gaussian constraint is nothing
but (27). Consequently, we have proved the following theorem.

Theorem 3 (Gauss’ principle of least constraint). An admissible motion (16) is the actual
motion of the system if and only if it minimizes the Gaussian constraint (28) at each state.

Seeing the deviation γ − γ0 as the vector ĤL-equivalent of the force of constraint Qid

(see (23)), the force of constraint is also minimal.
The Gauss principle is valid at each state of velocity z ∈ N1; it states that among

all admissible accelerations w ∈ µ−1(z) the actual one chosen by the system is the one
minimizing the Gaussian constraint. This principle is equivalent to the D’Alembert–Lagrange
construction followed by us, and can be put at the foundations of classical mechanics.

8. Examples

Let us apply these constructions to some known examples taken from classical mechanics. We
will use subscripts instead of superscripts in coordinates qi , velocities vi and accelerations ai .

Example 1. Let us consider the Lagrangian L ∈ C∞(T (R2 × S2)) given in local coordinates
by

L = 1
2m

(
v2

1 + v2
2

)
+ 1

2I3v
2
3 + 1

2I4v
2
4, (29)

and subject to the non-holonomic constraints

v1 − Rv4 cos q3 = 0, v2 − Rv4 sin q3 = 0, (30)

with m, I3, I4 and R being positive constants. This is the case of a rolling-spinning disc on a
horizontal plane: m is the mass, R the radius and I3, I4 are the momenta of inertia with respect to
the spinning and rolling axes, respectively. The unconstrained motion is γ0(q, v) = (q, v; 0),
and the Hessian is given by ĤL(q, v) = diag(m,m, I3, I4).
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The total time derivative of constraints (30) is

dTf (q, v, a) =
(

a1 − Ra4 cos q3 + Rv3v4 sin q3

a2 − Ra4 sin q3 − Rv3v4 cos q3

)
∈ {(q, v)} × R

2,

so its linear part [dTf ] : V (τM) → T M ×R
2 is represented on the basis {∂/∂vi} of V(q,v)(τM)

and the canonical basis (e1, e2) of R
2 by the matrix

[dTf ](q, v) =
(

1 0 0 −R cos q3

0 1 0 −R sin q3

)
,

and the vector b(q, v) = −dTf (q, v; 0) (16) is given by

b(q, v) = Rv3v4(−sin q3e1 + cos q3e4) ∈ {(q, v)} × R
2.

In order to find the inverse of [dTf ] we have that ker[dTf ](q, v) is generated by the
vectors R cos q3e1 + R sin q3e2 + e4 and e3, while (ker[dTf ])⊥ is generated by the vectors
e1 − (mR/I4) cos q3e4 and e2 − (mR/I4) sin q3e4. As the constraint function f is epijective,
we also have Im[dTf ] = R

2. Thus, the M–P inverse we are looking for is

[dTf ]†(q, v) = 1

I4 + mR2




I4 + mR2 sin2 q3 −mR2 sin q3 cos q3

−mR2 sin q3 cos q3 I4 + mR2 cos2 q3

0 0
−mR

I4
cos q3 −mR

I4
sin q3


 .

Assuming that the constraints are ideal, the deviation from the released motion is
(γ − γ0)(q, v) = [dTf ]† · b(q, v) = Rv3v4(− sin q3∂/∂v1 + R cos q3∂/∂v2), and gives rise
to the consistent system of second-order differential equations determining all the constrained
motions (cf f.i. [6])

q̈1 = −Rq̇3q̇4 sin q3, q̈2 = Rq̇3q̇4 cos q3, q̈3 = 0, q̈4 = 0.

To find the Lagrange multiplier � and the (ideal) constraint force Q we first note that
[dTf ][dTf ]t is invertible, and then its M–P inverse is the inverse matrix A = ([dTf ][dTf ]t )−1,

A = m

I4 + mR2

(
I4 + mR2 sin2 q3 −mR2 sin q3 cos q3

−mR2 sin q3 cos q3 I4 + mR2 cos2 q3

)
,

consequently

�(q, v) = ĝ2([dTf ][dTf ]t )†b(q, v) = mRv3v4(−sin q3ε
1 + cos q3ε

2),

with (ε1, ε2) being the dual basis of (e1, e2), and

Q(q, v) = [dTf ]∗�(q, v) = mRv3v4(−sin q3dv1 + cos q3dv2).

We could also evaluate the constraint force by using the expression Q = ĤL ◦ γ , and we
shall obtain, of course, the same result.

Example 2. Sometimes it is of interest to ask for the force acting on a mechanical system in
order to have a partially known motion, that is, a motion of which we know some characteristics,
like the equation of the orbit or some first integrals. A typical and important inverse problem
of this kind is the very well-known Kepler problem, already treated in [16] with the aid of
the M–P inverse in Cartesian coordinates. Let us try to find now the force responsible for the
motion of a particle of mass m in an aerial-velocity preserving elliptic orbit centred at a point
O. We know that the (free) Lagrangian L ∈ C∞(T (R2 −O)) is expressed in polar coordinates
(r, ϕ) centred at O as follows:

L = 1
2m

(
v2

r + r2v2
ϕ

)
. (31)
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If we fix ϕ = 0 at one pericentre, the equation of the orbit and the conservation of the
aerial-velocity (or Kepler’s second law) are

p

r2
= 1 + ε cos(2ϕ), r2vϕ = C, (32)

where p, ε and C are constants (with ε < 1). The problem is to look for the ideal constraint
force of constraints (32) which apart the Lagrangian system (31) from the released motion
a0

r = rv2
ϕ, a0

ϕ = − 2
r
vrvϕ .

The total time derivative of the constraints at the point with coordinates (r, v, vr , vϕ,

ar , aϕ) is the matrix

dTf =
( 2p

r
ar − 2εr(raϕ + 4vrvϕ) sin 2ϕ + 2p

r2 v2
r − 4εr2v2

ϕ cos 2ϕ

r2aϕ + 2rvrvϕ

)
,

its linear part is represented by the regular matrix

[dTf ] =
( 2p

r
−2εr2 sin 2ϕ

0 r2

)
,

whose M–P inverse is its inverse matrix

[dTf ]† = [dTf ]−1 = 1

2pr

(
r2 2εr2 sin 2ϕ

0 2p

r

)
.

Taking into account constraints (32), the vector b is given by

b = −2C2(1 − ε2)

p2
e1,

and consequently the deviation γ − γ0 is

γ − γ0 = [dTf ]†b(r, ϕ, vr , vϕ) = −C2(1 − ε2)

p2
r

∂

∂vr

.

Finally, the constraint force will be

Q(r, ϕ, vr , vϕ) = ĤL ◦ γ (r, ϕ, vr , vϕ) = −mC2(1 − ε2)

p2
rdvr ,

with the Hessian ĤL(r, ϕ, vr , vϕ) = diag(m,mr2). We recognize here an elastic force of
Hooke’s type centred at the point O.

More examples can be seen in [16].
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